
Industry Foundation Classes - Release 2.0

Specifications Volume 2

IFC Object Model Guide

BETA - 10-January-99

International Alliance for Interoperability
Enabling Interoperability in the AEC/FM Industry

.

Industry Foundation Classes - Release 2.0

Specifications Volume 2

IFC Object Model Guide

Enabling Interoperability in the AEC/FM Industry

Copyright 1996-99 - International Alliance of Interoperability (IAI)

Mailing address: 2960 Chain Bridge Road - Suite 143
Oakton, Virginia 22124

Email address: IAI@Interoperability.com

Web Address: www.Interoperability.com

All rights reserved. No part of the contents of this document may be reproduced or
transmitted in any form or by any means without the written permission of the
copyright holder (IAI).

Document Editor

Editor Richard See
Development committee Specification Task Force

Document Control

Project reference IFC Release 2.0
Document reference IFC Object Model Guide
Document version IFC Release 2.0 – Beta
Release date January 10, 1998
Status For Comments
Distribution IAI Member Companies
Distribution format PDF file

Revisions
Rev. Person Date Description
Alpha Richard See 10-Aug-98 Alpha release
Beta Richard See 10-Jan-99 Beta release

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
Table of Contents Page i

Copyright International Alliance for Interoperability - 1996-1999

Contents

1. INTRODUCTION, SCOPE AND ASSUMPTIONS ..1
1.1 PURPOSE OF THESE DOCUMENTS ...1
1.2 IFC RELEASE DOCUMENT SUITE ..1
1.3 SCOPE..2

1.3.1 Scope for IFC Release 2.0..2
1.3.2 Scope of this document...4

1.4 ASSUMPTIONS AND ABBREVIATIONS..5
1.5 INTERNATIONAL ALLIANCE FOR INTEROPERABILITY (IAI) ...6

2. OBJECT MODEL ARCHITECTURE ..7
2.1 IFC MODEL ARCHITECTURE PRINCIPLES...7
2.2 MODEL MODULES DEFINED IN EACH LAYER ...9
2.3 RESOURCE LAYER...9

2.3.1 Resource schemas for R1.5 ...10
2.3.2 Resource schemas for R2.0 ...10

2.4 CORE LAYER...10
2.4.1 Kernel ..11
Core Extensions ...11
2.4.3 Core schemas extended from R1.5 ..11
2.4.4 Core schemas for R2.0 ...12

2.5 INTEROPERABILITY LAYER ..12
2.5.1 Interoperability schemas extended from R1.5...12
2.5.2 Interoperability schemas for R2.0 ...12
2.5.3 Adapter Definitions..12

2.6 DOMAIN/APPLICATIONS LAYER ...13
2.6.1 Domain/Application Models extended from R1.5..13
2.6.2 Domain/Application Models Added in R2.0...13

3. MODEL OVERVIEW ..15
3.1 MODEL SCOPE ..16

3.1.1 IFC Object Model Hierarchy..16
3.2 RESOURCE LAYER...20

3.2.1 IfcUtilitiesResource Schema ...20
3.2.2 IfcMeasureResource Schema...20
3.2.3 IfcGeometryResource Schema...20
3.2.4 IfcPropertyTypeResource Schema ...22
3.2.5 IfcPropertyResource Schema ...22

3.3 CORE LAYER...23
3.3.1 IfcKernel Schema..23
3.3.2 IfcDocumentsExtension Schema..23
3.3.3 IfcModelingAidExtension Schema...23
3.3.4 IfcProcessExtension Schema ...24
3.3.5 IfcProductExtension Schema..24

3.4 INTEROPERABILITY LAYER ..25
3.4.1 IfcSharedBldgElements Schema ..25
3.4.2 IfcSharedBldgServiceElements Schema ..25

3.5 DOMAIN/APPLICATIONS MODEL LAYER..26
3.5.1 IfcArchitecture Schema...26
3.5.2 IfcFacilitiesMgmt Schema ...26

4. KEY IFC MODEL CONCEPTS...27
4.1 SPECIALIZED VIEWS OF THE IFC MODEL...27

4.1.1 Data Model view in EXPRESS ..27
4.1.2 Software Interfaces view in OMG IDL ...27

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page ii Table of Contents

Copyright International Alliance for Interoperability - 1996-1999

4.2 MULTI-FUNCTIONAL ELEMENTS AND SYSTEMS...28
4.3 CAPTURING DESIGN INTENT AND DESIGN CONSTRAINTS ..28

4.3.1 Specified Design Program ..28
4.3.2 Design Modeling Aids..28
4.3.3 Connections between Model Elements...29

4.4 RELATIONSHIPS BETWEEN OBJECTS ...29
4.4.1 Relationships used in this Release ...29
4.4.2 Objectified Relationships...29
4.4.3 Containment..30
4.4.4 Object Grouping ..30

4.5 IFC MODEL EXTENSION ...30
4.5.1 Extension by Developers...31
4.5.2 Extension by End Users ..31

5. GUIDE TO THE RESOURCES LAYER..33
5.1 IFCUTILITYRESOURCE ...33
5.2 IFC MEASURE RESOURCE ...33

5.2.1 Units of Measure ...33
5.3 IFCGEOMETRYRESOURCE..36

5.3.1 Geometry...36
5.4 IFCPROPERTYRESOURCE ..40

5.4.1 Classification ...40
5.4.2 Cost ...42
5.4.3 Identification ..43

5.5 IFCPROPERTYTYPERESOURCE..44
5.5.1 PropertySets..44
5.5.2 TypeDefinitions..47

6. GUIDE TO THE CORE LAYER..49
7. GUIDE TO THE INTEROPERABILITY LAYER..51
8. GUIDE TO THE DOMAIN/APPLICATION MODELS LAYER.......................................53

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
1 - Introduction, Scope and Assumptions Page 1

Copyright International Alliance for Interoperability - 1996-1999

1. Introduction, Scope and Assumptions

1.1 Purpose of these documents
The purpose of this document suite is to provide a detailed specification of the Industry Foundation Classes
(IFC) as defined by the Industry Alliance for Interoperability (IAI). The intended audience is the IAI
membership, industry domain experts, and software developers interested in implementing IFC.

1.2 IFC Release Document Suite
IFC will be documented for two readers. The AEC professional and the software profession serving the AEC
industry. Documents in this release include:

An Introduction to IAI and IFC
The "An Introduction to IAI and IFC," as the name
implies, provides AEC/FM industry professionals
with an introduction to the organization, including its
mission and organization. It also introduces the
shared project model concept, end user benefits in
using IFC compliant applications and summarizes
the AEC Industry processes that are supported by
this release of IFC. Finally, it provides a preview of
what will be added in future releases.

IFC Specification Development Guide
The "IFC Specification Development Guide" defines
the process used by the IAI in developing IFC. It
also provides various references supporting parts of
this process such as development of process
diagrams, development of detailed requirement
definitions and reading/creating EXPRESS (data
model) definitions and EXPRESS-G diagrams.

IFC Object Model Architecture Guide
The "IFC Object Model Architecture Guide" defines the architecture used in the design of the IFC object
model. This architecture is modular and layered which allows independent development and evolution of sub-
schemata. This document is written for software developers who will develop applications supporting IFC.

Volume 1: AEC/FM Processes Supported by IFC
THIS DOCUMENT -- The "AEC/FM Processes Supported by IFC" volume documents the AEC/FM industry
processes that the IFC Project Model in this release is designed to support. Therefore, this document
effectively defines the scope of AEC project information included in this Release. Volumes 2 and 3 structure
this information for use in applications. Note that this IFC release is limited to the information content of the
foundation classes defined. Behavior for these objects, and thus the implementation of software that will
support these AEC industry processes, will be defined by the implementing software vendors.

Volume 2: IFC Object Model Guide
The "IFC Object Model Guide" defines model design and use concepts for IFC object model. These key
concepts include: an overview of model architecture, capturing design intent, sharing semantic relationships,
model extension by application developers. It also describes some implementation strategies such as file
based model exchange, Client-Server architectures and runtime interoperability supported through standard
software interfaces of the IFC model. This includes provides an overview and example of the physical file
format for file based model exchange.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 2 1 - Introduction, Scope and Assumptions

Copyright International Alliance for Interoperability - 1996-1999

Volume 3: IFC Object Model Reference
The "IFC Object Model Reference" provides detailed definitions for each of the classes and data types
defined in the IFC object model. This includes all of the information required by the AEC processes defined in
volume 1, structured in an information model detailing object class data, relationships, standard interfaces,
type definitions and geometry schema use for shape representation. Additionally, it provides a data model
view defined in EXPRESS and a standard interfaces view defined in IDL. Each of these code sets will be
used by application developers as input into Computer Aided Software Engineering (CASE) tools to semi-
automate development of applications supporting IFC. Finally, a on-line version of this information is provided
using an HTML document set that is cross linked for easy access to information related to or supporting a
particular class or data type.

Volume 4: IFC Software Implementation Certification Guide
The "IFC Software implementation Certification Guide" provides detailed information about conformance
certifications issues and the methodology that will be used by the IAI to certify applications for multiple levels
of IFC conformance. This includes an overview of the concepts for conformance assessment and
certification, definition of various "Exchange Set" subsets of the IFC model for which certification can be
assessed and an overview of the testing suites that will be used for certification testing.

1.3 Scope

1.3.1 Scope for IFC Release 2.0
Enabling interoperability between applications by different software vendors is the ultimate goal of the IAI.
This is a very ambitious goal and will be achieved through a series of incremental steps.

In general, the IAI is focused on providing three things in IFC:

1. Standard definitions for the attributes associated with entities comprising an AEC/FM project model
(objects)

2. Structure and relationships between these entities from the point of view of various AEC/FM
professionals

3. Standard formats/protocols for two methods of sharing this information:
§ exchange via a standard file format
§ exchange via standard software interfaces

It is important to note that the software interface specifications in this release will not include any application-
specific behavior. Instead, these interfaces will be limited to get and set methods for the attribute and
relationship information defined in the data model.

Release 2.0 of IFC provided the infrastructure that supports this release, plus reasonable models for
architecture, some HVAC, estimating, scheduling and Facilities Management. This release will build on these
foundations and extend the model in several areas.

The scope for this release of the IFC Specifications is limited to:

1. Six AEC/FM domains - Architecture, HVAC engineering, codes and standards, cost estimating,
facilities management and simulation

2. Only a specific subset of the processes in these domains (defined in Volume 1 of these
specifications).

These domains and processes are:

Architectural Design
§ Building 'shell' design
§ Building 'core' design
 Stair design

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
1 - Introduction, Scope and Assumptions Page 3

Copyright International Alliance for Interoperability - 1996-1999

 Public toilet design
§ Roof design
§ Fire Compartmentation

HVAC Engineering
§ HVAC Duct System Design
§ HVAC Piping System Design
§ Pathway Design and Coordination
§ Building Heating and Cooling Load Calculation

Codes and Standards
§ Commercial and Residential Energy Code Compliance Checking

Cost Estimating
§ Cost Estimating
 Identify Objects
 Identify Tasks Needed to Install Objects
 Identify Resources Needed to Perform Tasks
 Quantify
 Costing and Cost Summarization

Facilities Management
§ Property Management
 Enabling the use of IFC objects in property management
 Grouping IFC objects
 Linking the maintenance objects to the IFC objects
§ Occupancy Planning
§ Design of Workstations
§ Floor Layout of Workstations for an Open Office

Simulation
§ Photo Accurate Visualization

All AEC domains
§ Project document management

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 4 1 - Introduction, Scope and Assumptions

Copyright International Alliance for Interoperability - 1996-1999

1.3.2 Scope of this document
This document serves as a guide to the IFC Object Model. This guide is intended to provide an
understanding of the key concepts, background research, and principles used in the development of IFC. It
also provides an explanation of the rationale behind the layered IFC models architecture. This layered
architecture provides a framework for the evolution of the IFC model in future releases while providing
stability for implementers of this release.

This information is presented in 8 sections:

1. Introduction, Scope and Assumptions
 Provides the reader with an introduction to the set of five volumes comprising this release of the IFC

Specifications. This section outlines the information included in this document versus related
documents. It will also define the scope for this release and assumptions about knowledge of the
reader.

2. IFC Model Architecture
This section explains the rationale behind the layered IFC model architecture that will allow IFC to
evolve in future releases.

3. IFC Model Overview
This section gives an overview of all the modules in the IFC model and can be used as a quick
reference to find particular entity definitions.

4. Key IFC Model Concepts
This section presents several key concepts used in IFC which will enable much more intelligent AEC
applications and which allow IFC to be extended -- in future releases, by developers and by end
users. It also includes descriptions of and the rationale for using different model views - such as the
EXPRESS data model view and the CORBA Interface Definition Language (IDL) view.

5. Guide to the Resources Layer
This section provides a guide to concepts in the Independent Resources Layer of the IFC Model.

6. Guide to the Core Layer
This section provides a guide to concepts in the Core Layer of the IFC Model.

7. Guide to the Interoperability Layer
This section provides a guide to concepts in the Interoperability Layer of the IFC Model.

8. Guide to the Domain/Application Models Layer
This section provides a guide to concepts in the Domain Extensions Layer of the IFC Model.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
1 - Introduction, Scope and Assumptions Page 5

Copyright International Alliance for Interoperability - 1996-1999

1.4 Assumptions and Abbreviations
This document assumes the reader is reasonably familiar with the following:

• AEC/FM market and project terminology

• Software industry terminology

• Concepts and terminology associated with object oriented software

The following abbreviations are used throughout the IFC Specifications:

• AEC/FM Architectural, Engineering, Construction and Facilities Management

• IAI Industry Alliance for Interoperability

• AP Application Protocol

• Arch Architecture

• CM Construction Management

• CORBA Common Object Request Broker Architecture

• COM Microsoft’s Component Object Model

• DCE Distributed Computing Environment

• DCOM Microsoft’s Distributed Component Object Model

• DSOM IBM’s Distributed System Object Model

• FM Facilities Management

• FTP File Transfer Protocol

• GUID Globally Unique Identifier

• HVAC Heating, Ventilating and Air Conditioning

• HTTP Hypertext Transport Protocol

• IAI International Alliance for Interoperability

• IDL Interface Definition Language

• IFC Industry Foundation Classes

• ISO International Standards Organization

• FM Facilities Management

• MIDL Microsoft’s Interface Definition Language

• ODL Microsoft’s Object Description Language

• OMG Object Management Group

• ORB Object Request Broker

• OSF Open Software Foundation

• RPC Remote Procedure Call

• SOM IBM’s System Object Model

• STEP Standard for the Exchange of Product Model Data

• TCP/IP Transmission Control Protocol/Internet Protocol

• TQM Total Quality Management

• URL Universal Resource Location

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 6 1 - Introduction, Scope and Assumptions

Copyright International Alliance for Interoperability - 1996-1999

1.5 International Alliance for Interoperability (IAI)
The IAI is a ‘not for profit’ industry alliance of companies. Its membership is comprised of visionary
companies representing all sectors of the AEC industry worldwide.

The IAI was first formed in September of 1995, by 12 industry leading companies who, during the previous
year had worked together to develop proof of concept prototypes demonstrating the viability of interoperability
between AEC software applications. This demonstration was shown publicly at the AEC Systems ’95
conference in Atlanta, Georgia. This is the third release of IFC since that time. There are currently 50
organizations implementing software to support IFC, a number that is growing quite rapidly now.

As of this printing, the IAI includes 9 international chapters with hundreds of member companies in the
following regions:

• Australasian countries
• French speaking region of Europe
• German speaking region of Europe
• Japan
• Korea
• Nordic countries of Europe
• North America
• Singapore
• United Kingdom

The IAI stated Vision, Mission and Values can be summarized as:

VISION
Enabling Interoperability in the A/E/C/FM Industry

MISSION
To define, promote and publish specifications for the Industry Foundation Classes (IFC) as a basis
for information sharing through the project life cycle, globally, across disciplines and technical
applications.

VALUES

• Not for profit industry organization
• Action oriented (Alliance v. Association)
• Consensus based decision making
• Incremental delivery (rather than prolonged study)
• Global solution
• Industry to define IFC
• IFC to be “open” (for implementation/use by all software vendors)
• Design for IFC to be extensible
• IFC will evolve over time
• Membership open to any company working in construction industry

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
2 - Object Model Architecture Page 7

Copyright International Alliance for Interoperability - 1996-1999

2. Object Model Architecture
This subsection describes a series of concepts used in the development of the IFC Object Model. It is
important to read this section before attempting to understand the model structure and content. Most
elements of the model are driven from one or more of these concepts.

2.1 IFC Model Architecture Principles
The IFC Object Model Architecture has been developed using a set of principles governing it's organization
and structure. These principles focus on basic requirements and can be summarized as:

• provide a modular structure to the model.
• provide a framework for sharing information between different disciplines within the AEC/FM industry.
• ease the continued maintenance and development of the model.
• enable information modelers to reuse model components
• enable software authors to reuse software components
• facilitate the provision of better upward compatibility between model releases

The IFC Object Model architecture provides a modular structure for the development of model components,
the 'model schemas'. There are four conceptual layers within the architecture, which use a strict referencing
hierarchy. Within each conceptual layer a set of model schemas is defined.

The first conceptual layer (shown at the bottom in Error! Reference source not found.) provides Resource
classes used by classes in the higher levels. The second conceptual layer provides a Core project model.
This Core contains the Kernel and several Core Extensions. The third conceptual layer provides a set of
modules defining concepts or objects common across multiple application types or AEC industry domains.
This is the Interoperability layer. Finally, the fourth and highest layer in the IFC Object Model is the
Domain/Applications Layer. It provides set of modules tailored for specific AEC industry domain or
application type. Additionally, this layer contains specialized model 'adapters' to non-IFC domain/application
models.

The architecture operates on a 'ladder principle'. At any layer, a class may reference a class at the same or
lower layer but may not reference a class from a higher layer. References within the same layer must be
designed very carefully in order to maintain modularity in the model design.

Inter-domain references at the Domain Models layer must be resolved through 'common concepts' defined in
the Interoperability layer. If possible, references between modules at the Resource layer should be avoided in
order to support the goal that each resource module is self-contained. However, there are some low level,
general purpose resources, such as measurement and identification that are referenced by many other
resources.

Ladder principle expanded:
1. Resource classes may only reference or use other Resources.
2. Core classes may reference other Core classes (subject to the limitations listed in 3) and may

reference classes within the Resource layer without limitations. Core classes may not reference or use
classes within the Interoperability or Domain/Applications layer.

3. Within the Core layer the 'ladder principle' also applies. Therefore, Kernel classes can be referenced or
used by classes in the Core Extensions but the reverse is not allowed. Kernel classes my not
reference Core Extension classes.

4. Interoperability layer classes can reference classes in the Core or Resource layers, but not in the
Domain/Applications layer.

5. Domain/Applications layer classes may reference any class in the Interoperability, Core and Resource
layers. Additionally, classes defined within custom Interoperability Adapters (interfaces to domain or
application models developed by others) may reference classes within the Interoperability layer.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 8 2 - Object Model Architecture

Copyright International Alliance for Interoperability - 1996-1999

Interoperability Modules

U
se

Extension Modules

Domain/Application Modules

Kernel
C

o
re

 L
ay

er
R

es
o

u
rc

e
L

ay
er

D
o

m
ai

n
/A

p
p

s
L

ay
er

Resource Modules

T
yp

eO
f

U
se

U
se

U
se

U
se

U
se

U
se

U
se

T
yp

eO
f

T
yp

eO
f

T
yp

eO
f

U
se

U
se

In
te

ro
p

L
ay

er

External
Domain/App

Models

M
ap

Interoperability Adapter

M
ap

T
yp

eO
f

Figure 1 Layering Concept of IFC architecture

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
2 - Object Model Architecture Page 9

Copyright International Alliance for Interoperability - 1996-1999

2.2 Model Modules defined in each Layer
As we saw in the last section, the IFC Model Architecture for Release 2.0 consists of the following four
layers. The model modules defined in each of these layers will be introduced in this section. IFC Release 2.0
includes 24 such model modules as outlined in the diagram below.

Figure 2 Model Modules defined in each layer

2.3 Resource Layer
Resources form the lowest layer in IFC Model Architecture and can be used or referenced by
classes in the other layers. Resources can be characterized as general purpose or low level
concepts or objects which do not rely on any other classes in the model for their existence.
There are a few exceptions to this characterization. Classes from the Utility and Measure
Resources are used by other, higher level resource classes.

All Resources represent individual business concepts. For instance, all information concerning the concept of
cost is collected together within the cost schema, the IfcCostResource. Any classes within the Core,
Interoperability or Domain/Application layers which need to use cost will reference this resource.

Actor
Resource

Geometry
Resource

Classifi-
cation

Resource

Material
Resource

Cost
Resource

Measure
Resource

DateTime
Resource

Property
Type

Resource

Shape
Rep.

Resource

Utility
Resource

Kernel

Constraint
 Ext.

Document
 Ext.

Modeling
 Aid
 Ext.

Project
Mgmt
Ext.

Product
Ext.

Process
Ext.

Shared Building
Elements

Shared Spatial
Elements

Shared Building
Service Elements

Architecture HVAC
Cost

Estimating
Facilities

Management

Actor
Resource

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 10 2 - Object Model Architecture

Copyright International Alliance for Interoperability - 1996-1999

Similarly, all ideas concerning geometry are collected together within the IfcGeometryResource.
Fundamental geometric entity definitions are defined in this resource. More specialized attribute driven
geometry constructs are also defined here. Geometry will be referenced by classes defined within the Core
and higher levels through the representation resource, also provided at the resource layer. However some
details within the IfcGeometryResource are hidden from classes in these higher layers. There is no
implication of choice for one of these representations coming from the resource layer, it simply provides the
definition. A Core model object may utilize several geometry entities for representation.

2.3.1 Resource schemas for R1.5
The following resource schemas were included in IFC R1.5:

• IfcUtilityResource (object identification, object history, general purpose tables)
• IfcMeasureResource (units of measure, standard measurement types, custom measurement types)
• IfcGeometryResource (attribute driven geometric representation items, explicit geometric

representation items, topological representation items, geometric models)
• IfcPropertyTypeResource (fundamental property types, property type definitions, property sets, shape

representation)
• IfcPropertyResource (extended property types: material, cost, actor, classification, time)

2.3.2 Resource schemas for R2.0
In IFC Release 2.0, many of these resources were re-organized or move to separate schemas. The
complete list of resources included in this release are:

• IfcActorResource (was part of IfcPropertyResource in R1.5)
• IfcClassificationResource (was part of IfcPropertyResource in R1.5)
• IfcCostResource (was part of IfcPropertyResource in R1.5)
• IfcDateAndTimeResource (was part of IfcPropertyResource in R1.5)
• IfcGeometricModelResource (was part of IfcGeometryResource in R1.5)
• IfcGeometryResource (largely the same as in R1.5)
• IfcMaterialResource (was part of IfcPropertyResource in R1.5)
• IfcMeasureResource (largely the same as in R1.5)
• IfcPropertyResource (was IFcPropertyTypeResource in R1.5
• IfcRepresentationResource (was part of IfcPropertyResource in R1.5)
• IfcTopologyResource (was part of IfcGeometryResource in R1.5)
• IfcUtilityResource (extended from R1.5)

2.4 Core Layer
The Core forms the next layer in IFC Model Architecture. Classes defined here can be referenced and
specialized by all classes in the Interoperability and Domain/ Application layers. The Core layer provides the
basic structure of the IFC object model and defines most abstract concepts that will be specialized by higher
layers of the IFC object model.

The Core includes two levels of abstraction:
1. The Kernel
2. Core Extensions

Goals for Core Model Design:
• definition of the common superset of those concepts that later can be refined and used by various

interoperability and domain models
• pre-harmonization of domain models by providing this common superset
• stable definition of the object model foundation to support upgrade compatible IFC Releases

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
2 - Object Model Architecture Page 11

Copyright International Alliance for Interoperability - 1996-1999

2.4.1 Kernel
The Kernel provides all the basic concepts required for IFC models within
the scope of the current IFC Release. The Kernel also determines the model
structure and decomposition. Concepts defined in the kernel are,
necessarily, abstracted to a high level. The kernel also includes fundamental
concepts concerning the provision of objects, relationships, type definitions,
attributes and roles. The Kernel can be envisioned as a kind of Meta Model
that provides the platform for all model extensions. The constructs that form

the Kernel are very generic and are not AEC/FM specific, although they will only be used for AEC/FM
purposes due to the specialization by Core Extensions. The Kernel constructs will be included as a mandatory
part of all IFC implementations.

The Kernel is the foundation of the Core Model. Kernel classes may reference classes in the Resource layer
but may not reference those in the other parts of the Core or in higher level model layers. The use of
Resources will be facilitated by well defined interfaces within resource schemata. Thus, the design detail for
any particular resource will be hidden from referencing classes within the Kernel.

2.4.2 Core Extensions
Core Extensions, as the name implies, provide extension or specialization of
concepts defined in the Kernel. Core Extensions are therefore, the first refinement
layer for abstract Kernel constructs. More specifically, they extend Kernel
constructs for use within the AEC/FM industry. Each Core Extension is a
specialization of classes defined in the Kernel. Figure 3 shows the further
specialization of classes rooted in the IfcKernel.

Beyond this class specialization, primary relationships and roles are also defined
within the Core Extensions.

IfcObject

IfcProcess

IfcProductIfcProductExtension

IfcProcessExtension

KernelCore
Extension

IfcModelingAid

IfcDocument

IfcModelingAidExtension

IfcDocumentExtension

Figure 3 Core Extensions from Kernel Classes

A class defined within a Core Extension may be used or referenced by classes defined in the Inteoperability
or Domain/Applications layers, but not by a class within the Kernel or in the Resource layer. References
between Core Extensions have to be defined very carefully in a way that allows the selection of a singular
Core Extension without destroying data integrity by invalid external references.

2.4.3 Core schemas extended from R1.5
The following schemas are included in the IFC R1.5 Core layer and extended in R2.0:

Kernel

Constraint
 Ext.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 12 2 - Object Model Architecture

Copyright International Alliance for Interoperability - 1996-1999

• IfcKernel
• IfcProductExtension
• IfcProcessExtension
• IfcModelingAidExtension
• IfcDocumentExtension

2.4.4 Core schemas for R2.0
Within the IFC Release 2.0 project scope the following core schemas are included.

• IfcConstraintExtension
• IfcProjectMgmtExtension

2.5 Interoperability Layer
 The main goal in the design of Interoperability Layer is the provision of modules
defining concepts or objects common to two or more domain/ application models.
The commonly used, 'common concept' modules enable interoperability between
different domain or application models. Introduction of this model layer is the best
example of a general purpose model design guideline, that the model should

incorporate a 'Plug-In' architecture -- allowing multiple domain or application models to be 'Plugged into' the
common IFC Core. Such a 'Plug-In' architecture will also support outsourcing the development of
domain/application models.

2.5.1 Interoperability schemas extended from R1.5
The following schemas were included in the IFC R1.5 Interoperability layer and extended in R2.0:

• IfcSharedBldgElements (all fundamental building elements shared between domains)
• IfcSharedBldgServiceElements (all fundamental building service elements shared between domains)

2.5.2 Interoperability schemas for R2.0
The following schemas were added to the Interoperability layer in R2.0:

• IfcSharedSpatialElements

2.5.3 Adapter Definitions
Although not yet used in the current IFC Release the concept of an 'adapter' is foreseen to access various
domain models, including disperse models (i.e. those defined outside the International Alliance for
Interoperability). The main requirements for Adapters are the facilitation of:

1. Direct Plug-In of IFC developed Domain Models, that is a direct reference and use of Core definitions
by the appropriate Domain Models through the provision of interoperable class definitions at the
Interoperability layer. This is currently the only applied technique.

2. Plug-In of externally developed, non harmonized, Domain Models via an Adapter that provides a
mapping mechanism down to Core and Interoperability definitions. The definition of the Adapter Plug is
in the responsibility of the Domain Model developer and is part of the Domain Model Layer.

3. Establish an inter-domain exchange mechanism above the Core to enable interoperability across
domains. This includes a container mechanism to package information. Therefore an Adapter is used
where the definition of the Adapter is the responsibility of all Domain Models sharing this Adapter Plug.

The Adapters are based on Core Extension definitions and enhance those Core Extension definitions. Those
enhancements provide common concepts for all Domain Models that might further refine these concepts. As
an example, the Building Element Socket provides the definition of a common wall, whereas the Architectural
Domain Model will enhance this common wall with its private subtypes and type definitions within Release 3.0

Shared Building
Elements

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
2 - Object Model Architecture Page 13

Copyright International Alliance for Interoperability - 1996-1999

time frame. An Adapter Socket that is used by several Domain Models therefore provides a medium level of
interoperability through shared Adapter Socket definitions.

IFC Domain extensions that tightly couple with the Core Model such as those defined within the IFC Model
(i.e., HVAC and Architecture) do not require an additional mapping of Domain Model definitions down to Core
definitions, therefore they do not need specific Adapter.

Non-IFC harmonized models can be connected to the IFC Core Model through a mapping defined by a
specific Adapter. This methods needs to be further elaborated within the Release 3.0 time frame. For specific
high-level inter-domain exchange, that cannot be satisfied by common definitions in the Core, the Adapter
may provide a specific inter-domain mapping. This Adapter type has to be developed within Release 3.0 time
frame as well.

2.6 Domain/Applications Layer
Domain/Applications Models provide further model detail within the scope requirements
for an AEC/FM domain process or a type of application. Each is a separate model which
may use or reference any class defined in the Core and Independent Resource layers.
Examples of Domain Models are Architecture, HVAC, FM, Structural Engineering etc. A
main purpose of Domain Models is the provision of specialized type definitions that are
tailored for the use within this domain.

Part of the Domain Model definition is the definition of the Adapter Plugs if needed. Fully harmonized IFC
Domain Models will be directly plugged in the Core definitions. Domain Models which are non fully
harmonized have to provide appropriate Adapter Plug definitions in order to be enabled to use the IFC model
framework. The Adapter Sockets provide the guidelines to develop those Plugs. If inter-domain
interoperability has to be achieved that extends the common shared Core definitions, those Domain Model
developments have to be combined in order to provide an interoperable Plug.

2.6.1 Domain/Application Models extended from R1.5
The following Domain Models were included in IFC R1.5 and extended in R2.0:

• IfcArchitecture
• IfcFacilitiesMgmt

2.6.2 Domain/Application Models Added in R2.0
The following Domain Models have been added in IFC R2.0:

• IfcCostEstimatingDomain
• IfcHVACDomain

Architecture

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 14 2 - Object Model Architecture

Copyright International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 15

Copyright International Alliance for Interoperability - 1996-1999

3. Object Model Overview
This section will provide a high level overview of the Object Model. It summarizes the following model
modules as structured in the Model Architecture section above.

Resources layer
 1. IfcActorResource
 2. IfcClassificationResource
 3. IfcCostResource
 4. IfcDateAndTimeResource
 5. IfcGeometricModelResource
 6. IfcGeometryResource
 7. IfcMaterialResource
 8. IfcMeasureResource
 9. IfcPropertyResource
 10. IfcRepresentationResource
 11. IfcTopologyResource
 12. IfcUtilityResource

Core Layer
 13. IfcKernel
 14. IfcConstraintExtension
 15. IfcDocumentExtension
 16. IfcModelingAidExtension
 17. IfcProductExtension
 18. IfcProcessExtension
 19. IfcProjectMgmtExtension

Interoperability Layer
 20. IfcSharedBldgElements
 21. IfcSharedBldgServiceElements
 22. IfcSharedSpatialElements

Domain Extensions Layer
 23. IfcArchitecture
 24. IfcCostEstimating
 25. IfcFacilitiesMgmt
 26. IfcHVAC

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 16 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

3.1 Model Scope
Although we have focused the scope of Release 2.0 to support business processes in a selected set of AEC
market domains, a large number of foundation classes are included in the Object Model. Many of these
provide the underlying structure that will support an increasing scope of AEC industry processes in future
releases. In this release, we have the following entity counts:

Object Model Classes 254

Core and Domain Extensions ??

Model Structure ??

Building Model ??

Documents Model ??

Process model ??

Resource model ??

Design aids/Design intent ??

Objectified relationships ??

Controls/Constraints ??

Semantic Groupings ??

Resources / Data Types ??

Utilities resource ??

Measure resource ??

Geometry resource ??

Properties resource ??

Type definition and PropertySets ??

Type definitions ??

PropertySet definitions ??

It is important to first understand the underlying structure of the model before looking at the individual
elements.

3.1.1 IFC Object Model Hierarchy
(** Note: this hierarchy list has not been updated in this Beta - it will be updated for
the final R2 release**)
This section provides a object class inheritence overview of the complete IFC model. It also lists the schema
in which each class is defined. Detailed specifications are available for each class in the IFC Object Model
Reference. These specifications include semantic definitions (for the class, attributes and relationships),
software interfaces, inheritence information, type definitions, and geometry use definitions (for shape
representations). Classes can be located alphabetically within the schema listed below.

Schema 1 2 3 4 5 6

1 IfcKernel IfcRoot
2 IfcKernel IfcModelingAid
3 IfcModelingAidExtension IfcDesignGrid
4 IfcModelingAidExtension IfcGridAxis
5 IfcModelingAidExtension IfcGridIntersection

Schema 1 2 3 4 5 6

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 17

Copyright International Alliance for Interoperability - 1996-1999

6 IfcModelingAidExtension IfcGridLevel
7 IfcKernel IfcLocalPlacement
8 IfcModelingAidExtension IfcConstrainedPlacement
9 IfcModelingAidExtension IfcPlacementConstraint

10 IfcModelingAidExtension IfcConstraintRelIntersection
11 IfcModelingAidExtension IfcReferenceGeometryAid
12 IfcModelingAidExtension IfcReferencePoint
13 IfcModelingAidExtension IfcReferenceCurve
14 IfcModelingAidExtension IfcReferenceSurface
15 IfcKernel IfcObject
16 IfcKernel IfcControl
17 IfcProductExtension IfcConnectionGeometry
18 IfcProductExtension IfcPointConnectionGeometry
19 IfcDocumentExtension IfcCostElement
20 IfcArchitecture IfcSpaceProgram
21 IfcProcessExtension IfcWorkSchedule
22 IfcKernel IfcDocument
23 IfcDocumentExtension IfcCostSchedule
24 IfcKernel IfcGroup
25 IfcDocumentExtension IfcCostElementGroup
26 IfcArchitecture IfcSpaceProgramGroup
27 IfcProductExtension IfcSystem
28 IfcProcessExtension IfcWorkGroup
29 IfcProductExtension IfcZone
30 IfcKernel IfcProcess
31 IfcProcessExtension IfcWorkTask
32 IfcKernel IfcProduct
33 IfcProductExtension IfcBuilding
34 IfcProductExtension IfcBuildingStorey
35 IfcProductExtension IfcElement
36 IfcProductExtension IfcOpeningElement
37 IfcProductExtension IfcBuildingElement
38 IfcSharedBldgElements IfcBeam
39 IfcSharedBldgElements IfcBuiltIn
40 IfcSharedBldgElements IfcColumn
41 IfcSharedBldgElements IfcCovering
42 IfcSharedBldgServiceElements IfcDiscreteElement
43 IfcSharedBldgServiceElements IfcDistributionElement
44 IfcSharedBldgElements IfcDoor
45 IfcSharedBldgServiceElements IfcElectricalAppliance
46 IfcSharedBldgServiceElements IfcEquipment
47 IfcSharedBldgServiceElements IfcFixture
48 IfcFacilitiesMgmt IfcFurniture
49 IfcSharedBldgElements IfcFloor
50 IfcSharedBldgElements IfcRoofSlab
51 IfcSharedBldgElements IfcWall
52 IfcSharedBldgElements IfcWindow
53 IfcProductExtension IfcSite
54 IfcProductExtension IfcSpatialElement
55 IfcProductExtension IfcSpace
56 IfcProductExtension IfcSpaceBoundary
57 IfcKernel IfcProject
58 IfcKernel IfcProxy
59 IfcKernel IfcResource

Schema 1 2 3 4 5 6

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 18 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

60 IfcKernel IfcRelationship
61 IfcKernel IfcRelationship1to1
62 IfcArchitecture IfcRelAdjacencyReq
63 IfcProductExtension IfcRelConnectsElements
64 IfcProductExtension IfcRelConnectsPathElements
65 IfcProcessExtension IfcRelResourceUse
66 IfcKernel IfcRelSequence
67 IfcKernel IfcRelationship1toN
68 IfcProductExtension IfcRelAssemblesElements
69 IfcProductExtension IfcRelAssemblesSpaces
70 IfcProductExtension IfcRelContains
71 IfcDocumentExtension IfcRelCostScheduleElement
72 IfcSharedBldgElements IfcRelCoversBldgElements
73 IfcProductExtension IfcRelFillsElements
74 IfcKernel IfcRelGroups
75 IfcProductExtension IfcRelSeparatesSpaces
76 IfcProductExtension IfcRelServicesBuildings
77 IfcProductExtension IfcRelVoidsElements
78 IfcKernel IfcRelUsesProducts
79 IfcGeometryResource IfcGeometricRepresentationItem
80 IfcGeometryResource IfcBoundingBox
81 IfcGeometryResource IfcCompositeCurveSegment
82 IfcGeometryResource IfcCurve
83 IfcGeometryResource IfcBoundedCurve
84 IfcGeometryResource IfcCompositeCurve
85 IfcGeometryResource Ifc2DCompositeCurve
86 IfcGeometryResource IfcPolyline
87 IfcGeometryResource IfcTrimmedCurve
88 IfcGeometryResource IfcConic
89 IfcGeometryResource IfcCircle
90 IfcGeometryResource IfcEllipse
91 IfcGeometryResource IfcLine
92 IfcGeometryResource IfcDirection
93 IfcGeometryResource IfcHalfSpaceSolid
94 IfcGeometryResource IfcPlacement
95 IfcGeometryResource IfcAxis1Placement
96 IfcGeometryResource IfcAxis2Placement2D
97 IfcGeometryResource IfcAxis2Placement3D
98 IfcGeometryResource IfcPoint
99 IfcGeometryResource IfcCartesianPoint

100 IfcGeometryResource IfcPolyLoop
101 IfcGeometryResource IfcSolidModel
102 IfcGeometryResource IfcAttDrivenExtrudedSolid
103 IfcGeometryResource IfcAttDrivenClippedExtrudedSolid
104 IfcGeometryResource IfcAttDrivenRevolvedSolid
105 IfcGeometryResource IfcAttDrivenClippedRevolvedSolid
106 IfcGeometryResource IfcManifoldSolidBrep
107 IfcGeometryResource IfcFacetedBrep
108 IfcGeometryResource IfcFacetedBrepWithVoids
109 IfcGeometryResource IfcSweptAreaSolid
110 IfcGeometryResource IfcExtrudedAreaSolid
111 IfcGeometryResource IfcAttDrivenExtrudedSegment
112 IfcGeometryResource IfcAttDrivenMorphedExtrudedSegment
113 IfcGeometryResource IfcAttDrivenTaperedExtrudedSegment

Schema 1 2 3 4 5 6

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 19

Copyright International Alliance for Interoperability - 1996-1999

114 IfcGeometryResource IfcRevolvedAreaSolid
115 IfcGeometryResource IfcAttDrivenRevolvedSegment
116 IfcGeometryResource IfcAttDrivenMorphedRevolvedSegment
117 IfcGeometryResource IfcAttDrivenTaperedRevolvedSegment
118 IfcGeometryResource IfcSurface
119 IfcGeometryResource IfcCurveBoundedPlane
120 IfcGeometryResource IfcElementarySurface
121 IfcGeometryResource IfcPlane
122 IfcGeometryResource IfcVector
123 IfcMeasureResource IfcNamedUnit
124 IfcMeasureResource IfcContextDependentUnit
125 IfcMeasureResource IfcConversionBasedUnit
126 IfcMeasureResource IfcSiUnit
127 IfcPropertyTypeResource IfcProperty
128 IfcPropertyResource IfcCalendarDate
129 IfcPropertyResource IfcClassification
130 IfcPropertyResource IfcClassificationList
131 IfcPropertyResource IfcCost
132 IfcPropertyResource IfcDateAndTime
133 IfcPropertyResource IfcLocalTime
134 IfcPropertyResource IfcMaterial
135 IfcPropertyResource IfcMaterialList
136 IfcPropertyResource IfcMaterialLayerSet
137 IfcPropertyTypeResource IfcObjectReference
138 IfcPropertyResource IfcOrganization
139 IfcPropertyResource IfcPerson
140 IfcPropertyResource IfcPersonAndOrganization
141 IfcPropertyTypeResource IfcProductShape
142 IfcPropertyTypeResource IfcPropertySet
143 IfcPropertyTypeResource IfcOccurrencePropertySet
144 IfcPropertyTypeResource IfcSharedPropertySet
145 IfcPropertyTypeResource IfcSimpleProperty
146 IfcPropertyTypeResource IfcPropertyWithUnit
147 IfcGeometryResource IfcAttDrivenProfileDef
148 IfcGeometryResource IfcArbitraryProfileDef
149 IfcGeometryResource IfcCircleProfileDef
150 IfcGeometryResource IfcRectangleProfileDef
151 IfcGeometryResource IfcTrapeziumProfileDef
152 IfcGeometryResource IfcTopologicalRepresentationItem
153 IfcGeometryResource IfcConnectedFaceSet
154 IfcGeometryResource IfcClosedShell
155 IfcGeometryResource IfcFace
156 IfcGeometryResource IfcFaceBound
157 IfcGeometryResource IfcFaceOuterBound
158 IfcPropertyResource IfcActorRole
159 IfcPropertyResource IfcAddress
160 IfcUtilityResource IfcAuditTrail
161 IfcPropertyResource IfcClassificationNotation
162 IfcPropertyResource IfcCoordinatedUniversalTimeOffset
163 IfcPropertyResource IfcCostModifier
164 IfcMeasureResource IfcDerivedUnit
165 IfcMeasureResource IfcDerivedUnitElement
166 IfcMeasureResource IfcDimensionalExponents
167 IfcPropertyResource IfcMaterialLayer

Schema 1 2 3 4 5 6

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 20 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

168 IfcPropertyResource IfcMaterialLayerSetUsage
169 IfcMeasureResource IfcMeasureWithUnit
170 IfcPropertyResource IfcNotationString
171 IfcUtilityResource IfcOwnerHistory
172 IfcUtilityResource IfcProjectAppRegistry
173 IfcPropertyResource IfcProjectMaterialRegistry
174 IfcUtilityResource IfcProjectTeamRegistry
175 IfcPropertyTypeResource IfcPropertyTypeDef
176 IfcUtilityResource IfcRegisteredApplication
177 IfcPropertyTypeResource IfcRepresentationContext
178 IfcPropertyTypeResource IfcShapeBody
179 IfcPropertyTypeResource IfcShapeResult
180 IfcPropertyTypeResource IfcShapeRepresentation
181 IfcUtilityResource IfcTable
182 IfcUtilityResource IfcTableRow
183 IfcUtilityResource IfcTransaction
184 IfcMeasureResource IfcUnitAssignment

3.2 Resource Layer

3.2.1 IfcUtilitiesResource Schema
1 2 3 4 5 6

160 IfcAuditTrail
171 IfcOwnerHistory
172 IfcProjectAppRegistry
174 IfcProjectTeamRegistry
176 IfcRegisteredApplication
181 IfcTable
182 IfcTableRow
183 IfcTransaction

3.2.2 IfcMeasureResource Schema
1 2 3 4 5 6

123 IfcNamedUnit
124 IfcContextDependentUnit
125 IfcConversionBasedUnit
126 IfcSiUnit
164 IfcDerivedUnit
165 IfcDerivedUnitElement
166 IfcDimensionalExponents
169 IfcMeasureWithUnit
184 IfcUnitAssignment

3.2.3 IfcGeometryResource Schema
1 2 3 4 5 6

147 IfcAttDrivenProfileDef
148 IfcArbitraryProfileDef

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 21

Copyright International Alliance for Interoperability - 1996-1999

149 IfcCircleProfileDef
150 IfcRectangleProfileDef
151 IfcTrapeziumProfileDef
79 IfcGeometricRepresentationItem
80 IfcBoundingBox
81 IfcCompositeCurveSegment
82 IfcCurve
83 IfcBoundedCurve
84 IfcCompositeCurve
85 Ifc2DCompositeCurve
86 IfcPolyline
87 IfcTrimmedCurve
88 IfcConic
89 IfcCircle
90 IfcEllipse
91 IfcLine
92 IfcDirection
93 IfcHalfSpaceSolid
94 IfcPlacement
95 IfcAxis1Placement
96 IfcAxis2Placement2D
97 IfcAxis2Placement3D
98 IfcPoint
99 IfcCartesianPoint
100 IfcPolyLoop
101 IfcSolidModel
102 IfcAttDrivenExtrudedSolid
103 IfcAttDrivenClippedExtrudedSolid
104 IfcAttDrivenRevolvedSolid
105 IfcAttDrivenClippedRevolvedSolid
106 IfcManifoldSolidBrep
107 IfcFacetedBrep
108 IfcFacetedBrepWithVoids
109 IfcSweptAreaSolid
110 IfcExtrudedAreaSolid
111 IfcAttDrivenExtrudedSegment
112 IfcAttDrivenMorphedExtrudedSegment
113 IfcAttDrivenTaperedExtrudedSegment
114 IfcRevolvedAreaSolid
115 IfcAttDrivenRevolvedSegment
116 IfcAttDrivenMorphedRevolvedSegment
117 IfcAttDrivenTaperedRevolvedSegment
118 IfcSurface
119 IfcCurveBoundedPlane
120 IfcElementarySurface
121 IfcPlane
122 IfcVector
152 IfcTopologicalRepresentationItem
153 IfcConnectedFaceSet
154 IfcClosedShell
155 IfcFace

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 22 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

156 IfcFaceBound
157 IfcFaceOuterBound

3.2.4 IfcPropertyTypeResource Schema
1 2 3 4 5 6

127 IfcProperty
137 IfcObjectReference
142 IfcPropertySet
143 IfcOccurrencePropertySet
144 IfcSharedPropertySet
145 IfcSimpleProperty
146 IfcPropertyWithUnit
141 IfcProductShape
175 IfcPropertyTypeDef
177 IfcRepresentationContext
178 IfcShapeBody
179 IfcShapeResult
180 IfcShapeRepresentation

3.2.5 IfcPropertyResource Schema
1 2 3 4 5 6

158 IfcActorRole
159 IfcAddress
161 IfcClassificationNotation
162 IfcCoordinatedUniversalTimeOffset
163 IfcCostModifier
167 IfcMaterialLayer
168 IfcMaterialLayerSetUsage
170 IfcNotationString
173 IfcProjectMaterialRegistry
127 IfcProperty (IfcPropertyTypeResource)

128 IfcCalendarDate
129 IfcClassification
130 IfcClassificationList
131 IfcCost
132 IfcDateAndTime
133 IfcLocalTime
134 IfcMaterial
135 IfcMaterialList
136 IfcMaterialLayerSet
138 IfcOrganization
139 IfcPerson
140 IfcPersonAndOrganization

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 23

Copyright International Alliance for Interoperability - 1996-1999

3.3 Core Layer

3.3.1 IfcKernel Schema
1 2 3 4 5 6

1 IfcRoot
2 IfcModelingAid
7 IfcLocalPlacement
15 IfcObject
16 IfcControl
22 IfcDocument
24 IfcGroup
30 IfcProcess
32 IfcProduct
57 IfcProject
58 IfcProxy
59 IfcResource
60 IfcRelationship
61 IfcRelationship1to1
66 IfcRelSequence
67 IfcRelationship1toN
74 IfcRelGroups
78 IfcRelUsesProducts

3.3.2 IfcDocumentsExtension Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

16 IfcControl (defined in IfcKernel)

19 IfcCostElement
22 IfcDocument (defined in IfcKernel)

23 IfcCostSchedule
24 IfcGroup (defined in IfcKernel)

25 IfcCostElementGroup
60 IfcRelationship (defined in IfcKernel)

67 IfcRelationship1toN (defined in IfcKernel)

71 IfcRelCostScheduleElement

3.3.3 IfcModelingAidExtension Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

2 IfcModelingAid (defined in IfcKernel)

3 IfcDesignGrid
4 IfcGridAxis
5 IfcGridIntersection
6 IfcGridLevel
7 IfcLocalPlacement (defined in IfcKernel)

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 24 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

8 IfcConstrainedPlacement
9 IfcPlacementConstraint
10 IfcConstraintRelIntersection
11 IfcReferenceGeometryAid
12 IfcReferencePoint
13 IfcReferenceCurve
14 IfcReferenceSurface

3.3.4 IfcProcessExtension Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

16 IfcControl (defined in IfcKernel)

21 IfcWorkSchedule
24 IfcGroup (defined in IfcKernel)

28 IfcWorkGroup
30 IfcProcess (defined in IfcKernel)

31 IfcWorkTask
60 IfcRelationship (defined in IfcKernel)

61 IfcRelationship1to1 (defined in IfcKernel)

65 IfcRelResourceUse

3.3.5 IfcProductExtension Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

16 IfcControl (defined in IfcKernel)

17 IfcConnectionGeometry
18 IfcPointConnectionGeometry
24 IfcGroup (defined in IfcKernel)

27 IfcSystem
29 IfcZone
32 IfcProduct (defined in IfcKernel)

33 IfcBuilding
34 IfcBuildingStorey
35 IfcElement
36 IfcOpeningElement
37 IfcBuildingElement
53 IfcSite
54 IfcSpatialElement
55 IfcSpace
56 IfcSpaceBoundary
60 IfcRelationship (defined in IfcKernel)

61 IfcRelationship1to1 (defined in IfcKernel)

63 IfcRelConnectsElements
64 IfcRelConnectsPathElements
67 IfcRelationship1toN (defined in IfcKernel)

68 IfcRelAssemblesElements

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
3 - Object Model Overview Page 25

Copyright International Alliance for Interoperability - 1996-1999

69 IfcRelAssemblesSpaces
70 IfcRelContains
73 IfcRelFillsElements
77 IfcRelVoidsElements
75 IfcRelSeparatesSpaces
76 IfcRelServicesBuildings

3.4 Interoperability Layer

3.4.1 IfcSharedBldgElements Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

32 IfcProduct (defined in IfcKernel)

35 IfcElement (defined in IfcProductExtension)

37 IfcBuildingElement (defined in IfcProductExtension)

38 IfcBeam
39 IfcBuiltIn
40 IfcColumn
41 IfcCovering
44 IfcDoor
49 IfcFloor
50 IfcRoofSlab
51 IfcWall
52 IfcWindow
60 IfcRelationship (defined in IfcKernel)

67 IfcRelationship1toN (defined in IfcKernel)

72 IfcRelCoversBldgElements

3.4.2 IfcSharedBldgServiceElements Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

32 IfcProduct (defined in IfcKernel)

35 IfcElement (defined in IfcProductExtension)

37 IfcBuildingElement (defined in IfcProductExtension)

42 IfcDiscreteElement
43 IfcDistributionElement
45 IfcElectricalAppliance
46 IfcEquipment
47 IfcFixture

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 26 3 - Object Model Overview

Copyright International Alliance for Interoperability - 1996-1999

3.5 Domain/Applications Model Layer

3.5.1 IfcArchitecture Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

16 IfcControl (defined in IfcKernel)

20 IfcSpaceProgram
24 IfcGroup
26 IfcSpaceProgramGroup
60 IfcRelationship (defined in IfcKernel)

61 IfcRelationship1to1 (defined in IfcKernel)

62 IfcRelAdjacencyReq

3.5.2 IfcFacilitiesMgmt Schema
1 2 3 4 5 6

1 IfcRoot (defined in IfcKernel)

15 IfcObject (defined in IfcKernel)

32 IfcProduct (defined in IfcKernel)

35 IfcElement (defined in IfcProductExtension)

37 IfcBuildingElement (defined in IfcProductExtension)

48 IfcFurniture

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
4 - Key Object Model Concepts Page 27

Copyright International Alliance for Interoperability - 1996-1999

4. Key Object Model Concepts

4.1 Specialized Views of the IFC Model
IFC can be supported through several different implementation and product alternatives. Over the next
several years, we anticipate product implementations will provide the following 'categories' of functionality -- in
the the order shown -- from least to most interoperable.

• Read/write of IFC model files ß Data Exchange
• Database oriented IFC model file server ß Runtime interface calls (data only)
• Runtime interoperable application objects ß Runtime interface calls (data or services)

In order to facilitate development of these different types of products and to reduce the chance for different
interpretations by different vendors, we have included specialized, 'industry standard' views of the IFC model.
Currently these 'standard views' include:

• Data Model for Data Exchange ß EXPRESS (ISO standard)
• Standard interface definitions ß IDL (OMG standard)

4.1.1 Data Model view in EXPRESS
EXPRESS is the ISO standard for the definition of software 'Data Models'. It is defined by ISO 10303 Part 11,
"Description Methods: The EXPRESS language reference manual".

The Data Model view of the IFC object model is presented in volume 3 of these specifications - "IFC Object
Model Reference".

There are serveral commercially available toolsets for compiling or interpreting EXPRESS data model
definitions. Many of these implement the EXPRESS language mappings to C++, IDL, Java and the Standard
Data Access Interfaces (SDAI) -- all defined in parts of ISO 10303. Others of these toolsets enable software
developers to read and write ASCII files structured according to the EXPRESS schema -- using the physical
file structure defined in ISO 10303 part 21.

4.1.2 Software Interfaces view in OMG IDL
The Interface Definition Language (IDL) is a standard for defining software interfaces - defined by the Object
Management Group (OMG). It is most closely related to OMG's Common Object Request Broker
Architecture (CORBA), and is one of the most commonly used interface definition languages in the software
industry.

Within the context of IFC, we use IDL to define the standard software interfaces to be supported by IFC
objects at runtime. Software vendors seeking product certification at the interface level, must successfully
complete testing of these standard software interfaces.

The Software Interfaces view of the IFC object model is presented in volume 3 of these specifications - "IFC
Object Model Reference".

There are several commercially available toolsets for compiling IDL interface definitions. Most of these
implement the IDL language mappings to C, C++ and Smalltalk -- which helps to automate the translation
from software product design (using IDL) to implementation (using one of the compiled languages listed).

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 28 4 - Key Object Model Concepts

Copyright International Alliance for Interoperability - 1996-1999

4.2 Multi-Functional Elements and Systems
Many attempts to model AEC projects in the past have been significantly limited because they chose to
categorize elements according to a primary functional role or as part of a system. This has not worked well
for AEC projects because so many elements act in multiple roles and/or in multiple systems. In the IFC
object model, we have attempted to avoid this by defining model elements, functional roles, and systems
separately so that an element can assume multiple roles and/or be a member of multiple systems.

Project elements are defined as specializations of IfcElement.

As this release of IFC is limited to project information sharing only (not functional behavior), functional roles
are defined as collections of attributes and relationships associated with this role that will be exposed through
a software interface corresponding to that role.

Project systems are defined as specializations of IfcSystem. For this release of IFC, this specialization will be
done solely through a system TypeDefinition.

See IfcElement subtypes, IfcElement.PerformedFuntions:Set [0:?] IfcElementFunctionTypeEnum and
IfcSystem.

4.3 Capturing Design Intent and Design Constraints
One of the most powerful features of the IFC model design is the inclusion of entities that will allow
applications to capture design intent and design constraints. The this release, we have only included a small
subset of what will be possible in future releases. Nevertheless, some powerful applications functionality will
be enabled, even with models defined using this release of IFC.

Some of the design intent and design constraint concepts supported in this IFC release are discussed next.

4.3.1 Specified Design Program
One of the most important information sets in any AEC/FM project is the client specified design program.
Architects have developed elaborate systems for capturing this programmatic information, but to date, there
are almost no applications which link these client specified design programs to design tools. We have
included a small set of entities that will allow some of this design program information to be captured and
related to elements in the project design. This will enable applications to aid designers in satisfying design
program requirements and also in demonstrating the degree to which program criterion are satisfied.

Specifically, with this release, detailed requirements for Spaces are included as well as space adjacency
requirements. This information is related directly to the spaces in the design model, thus enabling
applications and/or users to verify that the client specified design program has been satisfied.

See IfcProgramGroup, IfcSpaceProgram and IfcRelSpaceAdjacency.

4.3.2 Design Modeling Aids
Another important set of design constraints which AEC professionals are currently forced to coordinate
manually is design grids. Virtually all projects are designed using one or more design grids (for structure,
design, planning, facilities, etc.). This release of IFC includes a set of design grid elements and alignment
entities which will allow the designer to encode their intent to align building elements with design grid
elements or with other building elements.

Future releases should allow much more flexible use of design Aids or constraints including more complex
geometric relationships, alignment with offsets, budgetary constraints and code constraints.

See IfcDesignGrid, IfcGridLevel, IfcGridAxis, IfcGridIntersection, IfcReferencePoint, IfcReferenctCurve,
IfcReferenceSurface and IfcConstrainedPlacement.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
4 - Key Object Model Concepts Page 29

Copyright International Alliance for Interoperability - 1996-1999

4.3.3 Connections between Model Elements
Another design intent that can be captured and communicated via the IFC model is connectivity. Current
design tools do not allow such relationships and when a design change is made, the AEC user is forced to
manually update the impact on elements that 'should' remain connected. With IFC models, it will be possible
to capture the designer's intent to connect two or more elements. Within applications supporting this part of
IFC, when a design change involves moving one of the connected elements, the application will correctly
move or stretch the connected elements.

This release of IFC only supports point connections (the only subtype of IfcConnectionGeometry). However,
future releases will add connections at edges and surfaces.

See IfcRelConnectsElements, IfcRelConnectsPathElements and IfcPointConnection

4.4 Relationships between Objects

4.4.1 Relationships used in this Release
This inclusion of relationships between object in an IFC model is one of the most important improvements
over previous AEC software information sets. By standardizing the representation and thus the
understanding of key semantic relationships between objects in IFC models, software applications will be able
to deliver much more intelligent behavior in these objects.

However, the range of relationship types included in this release is limited. In general, we have included
relationships that fall into five categories:

• Containment (both physical and conceptual) -- discussed below
• Grouping -- discussed below
• Connectivity -- discussed above in "Key Concepts"
• Constraint -- discussed above in "Key Concepts"
• Resource -- discussed above in "Key Concepts"
• General (where some special semantic meaning is defined) -- instance unique and not discussed

In many cases, relationships have been 'generalized' using objectified relationships -- discussed below.

4.4.2 Objectified Relationships
While more 'expensive' to implement and in terms of software performance, Objectified relationships provide
several advantages over relationships declared within a specific class.

There were three driving motivations for using objectified relationsips:

1. Generalization (model simplification) -

2. Many to Many relationship resolution - In a number of cases in the model, we have situations where
the relationships are many to many between two classes. Objectified relationships allow us to
normalize these to a pair of many to one relationships.

3. Relationship objects that require behavior - In other cases, we are anticipated future requirements
for the IFC project model and supporting applications. The nature of some relationships will require
intelligent behavior in applications. An implementer will need to create a separate class for such a
relationships in order to encapsulate this behavior. This will simplify implementation of the objects
which use this relationship. As applications will be forced to objectify such relationships, we have
objectified them in the object model in an effort to enable a close mapping between the shared project
model and the object model used by supporting applications.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 30 4 - Key Object Model Concepts

Copyright International Alliance for Interoperability - 1996-1999

4.4.3 Containment
Throughout the model, you will see a standardized use of the relationships "HasXxx" and "PartOfXxx".
These standard relationship names have been used to represent two types of Containment:

• Primary IFC model element hierarchy
• Membership in a group or system.

Primary IFC Model element hierarchy

It is important to include a primary structuring of elements in a CAD model. The IFC model structure is
aligned with the most common organization of AEC project information:

Project >Sites >Buildings > Storeys

> > > > Spaces

> > > > Elements

That is to say; Projects contain Sites; Sites contain buildings; Buildings can contain Storeys. Additionally,
Sites, Buildings and Storeys may each contain Spaces or other building elements, either directly or through
another contained element.

Once again, this will enable applications to provide much more intelligent behavior. When a door or window
is removed, the opening may be healed; when a room is deleted, the user may be prompted about what to do
with the contained elements (assign them to another room or delete them as well).

4.4.4 Object Grouping
There are several examples of grouping elements in the model. One of the most obvious is through
membership to a system object. The system object maintains a list of all the elements which are 'PartOf' that
system. Possible uses for such groupings in software applications are endless.

For example, all members of a SpaceSeparation system associated with a suite of rooms could be selected
for addition of sound or fire resistance attributes; all elements in an air duct distribution system could be
selected for reconfiguration to rectangular versus circular shape.

This release of IFC only begins to allow such associations to be captured in the model. It does not yet include
any standardized behavior that might be related to such associations.

4.5 IFC Model Extension
As the IFC Project Model must be used by a large number of applications to be successful, it is important that
application developers not feel encumbered by it. In fact, it is a primary goal of the IAI that developers view
the IFC Project Model as a platform which empowers them through access to a very large constituency of end
users and compatible applications. Opportunities for strategic alliances, cooperative development and joint
marketing with other developers should be significantly enhanced.

Therefore, we have included some concepts in the design of the IFC object Model that will enable software
vendor extensions beyond the standard definitions provided by the IAI. Vendors who collaborate would be
able to pass this extended information between their applications, using the standard IFC infrastructure.

Over time, such extensions should be submitted for adoption by the IAI in subsequent releases of IFC. In this
way, IFC may be extended through the work of many organizations beyond the IAI.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
4 - Key Object Model Concepts Page 31

Copyright International Alliance for Interoperability - 1996-1999

4.5.1 Extension by Developers
In this IFC release, there are two primary extension mechanisms available to developers:

• Extension PropertySets
à allow the vendor to define virtually any collection of data needed by their application. This data is
attached on an instance by instance basis and will be preserved through round-trip data exchanges
with other IFC applications.

• TypeDefinitions
à allow the vendor to define specific object types (from the point of view of their application) which
will then allow them to associate datasets which are shared by all instances of the type AND/OR vary
with each occurrence of the object, but is attached to all instances as standard extension data for that
type. Again, this extension data is preserved through data exchange with other certified IFC
applications.

Applications seeking to use these extension mechanisms must simply implement the associated IFC model
entities -- either in a data exchange or software interfaces implementation. Methods for documenting such
extensions are provided in these specifications.

4.5.2 Extension by End Users
The software vendor accessible extension mechanism described above could also be exposed to the end
user. The vendor would need to develop a generalized interface such that the End User can specify
PropertySets that may be used in any of three cases:

• Type driven shared properties
• Type driven occurrence properties
• Extension properties

The application would also need to provide methods for the user to store and retrieve these PropertySet
definitions and to associate them with individual object instances or object type definitions.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 32 4 - Key Object Model Concepts

Copyright International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 33

Copyright International Alliance for Interoperability - 1996-1999

5. Guide to the Resources Layer

5.1 IfcUtilityResource

((** this section will be completed for the R2.0 final specifications **))

5.2 IFC Measure Resource

5.2.1 Units of Measure

5.2.1.1 Introduction
This section explains the approach to representing Units of Measure in this release of IFC.

5.2.1.2 Requirements
The following are noted requirements for Units of Measure in IFC. While not all of these will be satisfied in
this release of IFC, the requirements are noted here and should be addressed over time in future IFC
releases.

Quantities and Units of Measure

The schema should capture all information required to unambiguously translate dimensioned values from one
units system to another.

The schema should not constrain dimensioned values to be from a single standard units system.

It is not required that the schema capture the specific scale of a unit as entered. For example, an entry of
mm/s may be captured in terms of m/s. All scaling of dimensioned values for display purposes is up to the
application. For example, a value of 1E3 m/s can be displayed as 1 km/s. All decisions as to how to display
a value with units is made by the application and is not in the IFC scope.

The schema allows data required for an application to apply scaling to present the information with different
units multipliers to be captured in the exchange data set.

The standard provides a means to capture a measurement value and its unit of measure.

Currency

Provides for capturing monetary values in terms of any defined unit of currency specified by ISO 4217.

Provides for capturing the time of effectivity of all monetary values. This may be captured for a model as
whole. The time of effectivity represents the time at which all monetary values are defined. This permits
conversion between currency systems based on the exchange rate in effect at the time of effectivity.

Conversions between currency units are not required to be meaningful. All interpretations of such converted
values are the responsibility of the converting application.

Tolerances

The schema should provide for capture of a specified tolerance on any dimensioned value.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 34 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

The schema supports expressing tolerances as a range of allowed values, a nominal value with allowed
range, a nominal value with tolerance range specified in terms of a relative offset from the nominal value, and
a nominal value with tolerance specified as a ratio of the nominal value.

Note: this requirement is not satisfied in the current release of IFC.

Import/Export

The schema allows translation-free exchange between applications working in the same units system.

A conforming application is required only to write an exchange file based on any of the defined IFC standard
units.

5.2.1.3 Current Approaches

ISO 10303-41

Part 41 is one of the parts of the STEP Integrated Resources. Integrated resources are the fundamental
semantics with which product data are exchanged. Domain-specific parts (e.g., Part 225) define domain
semantics in an Application Reference Model (ARM), then define a mapping from the domain semantics to
the integrated resources in an Application Interpreted Model (AIM). This must be a conformal mapping
allowing unambiguous mapping from ARM to integrated resources and vice-versa.

Quantities and Units of Measure
The Part 41 approach is based on the use of ISO 1000 units as the fundamental units system, but allows
great flexibility in allowing parts or applications to define additional units. These units may be:

• a composition of base SI units (e.g., meters/second),
• scaled from other units (e.g. defining inches as 25.4 mm),
• unrelated to the SI system (e.g., a unit named “parts” that would have meaning only in the ARM

context) .

SI and SI-derived units are modeled with a unit vector that represents the exponent of the seven basic
dimensions a unit may have (i.e., length, mass, time, current, temperature, substance, and luminous
intensity). The standard allows the exponents to be real values. So, for example, a value can be expressed

in units of m1.5/s3.777. Real values may been chosen as the most general, but ARMs can restrict values to
integer as necessary.

The schema allows arbitrarily complex derivations. For example, an application can define a unit called “foo”

as m/s2, a unit called “bar” as foo2/s, a unit called “baz” as foo3/bar2, ad infinitum. This allows any arbitrary
units to be so defined. Note that these derived units are not directly referenced back to the fundamental
dimension vector. This permits the recovery of the name of the input unit, perhaps capturing some essence
of intent.

Conversion units allow scaling only. This may not support the mapping of one unit to another where a
constant offset is required (e.g., degrees Fahrenheit mapped to degrees Celsius).

The entity global_unit_assigned_context establishes a units system (a set of units) that is then used within a
specific context. An ARM would define this context at appropriate points. An ARM can decide to have a
single context, or can arrange nested contexts within some scope hierarchy. The context is a set of units and
can include any mix of SI, SI-derived, converted, and context-dependent units. A receiving application is be
required to be capable of recognizing all possible units and performing conversions as required between
them. Alternatively, an ARM can define rules on the context so that a constrained set of predefined units is all
that can be exchanged.

Currency
This standard does not define any standard currency units.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 35

Copyright International Alliance for Interoperability - 1996-1999

Tolerances
This standard does not address tolerances on values.

Import/Export
This standard does not apply any a-priori constraints on the units that an exchange data set may be conveyed
in. ARMs are presumably responsible for defining these constraints.

5.2.1.4 Units in IFC

Quantities and Units of Measure

The IFC measure resource contains the same (or similar) semantics as Part 41.

Domain model developers may define specialized subtypes of IfcMeasureWithUnit for each standard quantity
in the IFC domain (i.e., enumerate the quantities of the IFC domain). This can be done by defining
constraints on the dimension vector to ensure consistency. For example:

ENTITY MassFlowrate

SUBTYPE OF (IfcMeasureWithUnit);

WHERE

wh1: derive_IfcDimensionalExponents

(SELF\IfcMeasureWithUnit.UnitComponent)

= IfcDimensionalExponents(0,1,-1,0,0,0,0);

END_ENTITY;

Attribute types in IFC domain schemata are defined using these types. For example:

ENTITY PumpSpecification;

MaximumFlowrate : IfcMassFlowrate;

END_ENTITY;

Within an application that defines such subtypes, any defined unit can be assigned to the value instance. The
“where” rule ensures that any unit assigned to the value is a mass flow rate (mass/time) and allows the
exchange data set to be checked for consistency. This release of IFC does not include definition of any such
specialized units of measure. However, this will be considered in future releases.

Currency
TYPE IfcCurrencyTypeEnum = ENUMERATION OF (

 AED, AES, ATS, AUD, BBD, BEG, BGL, BHD, BMD,
 BND, BRL, BSD, BWP, BZD, CAD, CBD, CHF, CLP,
 CNY, CYS, CZK, DDP, DEM, DKK, EGL, EST, FAK,
 FIM, FJD, FKP, FRF, GBP, GIP, GMD, GRX, HKD,
 HUF, ICK, IDR, ILS, INR, IRP, ITL, JMD, JOD,
 JPY, KES, KRW, KWD, KYD, LKR, LUF, MTL, MUR,
 MXN, MYR, NLG, NZD, OMR, PGK, PHP, PKR, PLN,
 PTN, QAR, RUR, SAR, SCR, SEK, SGD, SKP, THB,
 TRL, TTD, TWD, USD, VEB, VND, XEU, ZAR, ZWD);

END_TYPE;

The Part 41 unit selection type is extended to include currency_unit.

Note that the above does not allow currency units to be used in derivations. It also does not allow currency
units to be composed with other units.

Tolerances

Tolerances on values are not supported in this release of IFC.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 36 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

Import/Export

Applications can exchange data in any defined set of units defined in accordance with the above units
schema.

Applications are required to include the definition of all units used in the exchange data in the exchanged data
set using the UnitsInContext attribute on the IfcProject object (of type IfcUnitAssignment).

Writing applications may write data sets using the same units used in the application.

Reading applications can examine the defined units set and determine translation requirements. The unit
definitions allow unambiguous translation. If the reading application uses the same units as the writer no
translation will be required, even if the units are not SI units.

5.3 IfcGeometryResource

5.3.1 Geometry

5.3.1.1 Introduction
The IFC Object Model includes geometry definitions for multiple purposes. In general, we have chosen to
use an implicit geometry definition of the physical shape of an object. In addition to this, applications may
optionally associate explicit geometry representations using an adapted subset of the entities defined in STEP
Integrated Resource part 42 for Geometric and Topological Representation (see references).

In order to allow for the coordination of multiple geometry representations, we have included the concept of a
Reference Geometry. In this release, we have chosen to limit the use of reference geometry to a single
placement entity (location and orientation), adapted from STEP part 42. There is a single placement defined
for any object. It is 'used by' the Bounding Box, Implicit and optional Explicit geometry representations.

Finally, in cases where specific geometry definition are not provided, a general purpose BoundingBox
representation is available for use with any physical object. This BoundingBox can thus be used by any
application as the minimal geometry representation for any object, even if a more specific representation is
available. The BoundingBox representation has been made mandatory for any element which has geometry
so that all IFC applications can rely on it to provide location, orientation and extent.

5.3.1.2 Scope
This section defines placement, minimal BoundingBox geometry, Implicit geometry (called Attribute Driven or
AttDriven geometry in this release) and Explicit geometry resources used to define the shape and spatial
arrangement of IFC project elements.

Such information can be used at all stages in the life-cycle of a building including: design process,
construction, facilities management and operations. The purpose of this section is to enable software
applications in all building and construction industry sectors to exchange building element shape and spatial
arrangement information.

The following are within the scope of this part of the specifications:

• Implicit (Attribute Driven) representation of the 3D shape of building elements
• The spatial arrangement of building elements that comprise the assembled building

The following are outside of the scope of this part of the specifications:

• Symbolic representations
• The contents of building standards
• Specifications of properties of building elements, including material composition
• Association of properties and classification information to building elements
• The assembly process, joining methods, and detailed connectivity of building elements
• Approval, revision, versioning and design change histories

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 37

Copyright International Alliance for Interoperability - 1996-1999

5.3.1.3 Definitions and Abbreviations

The following definitions apply to this section:

• explicit geometry: A geometry representation void of semantic meaning for its parts. Pure geometry
definition in terms of points, curves, surfaces and solid primitives. Examples: a cube could be defined in
terms of eight points, 12 edge curves, 6 bounded surfaces or some combination.

• implicit geometry or Attribute Driven: A geometric representation driven by attributes. Such a
representation will have few (if any) constraints. For example, a cube can be defined using a placement
entity (see placement entity definition) and a length attribute (aligned with the X-Axis of the local coordinate
system), a width attribute (aligned with the Y-Axis of the local coordinate system) and a height attribute
(aligned with the Z-Axis of the local coordinate system) -- length, width and height being the "driving"
attributes.

• parametric geometry or constrained geometry: A geometry representation driven by functions; complex
geometry reduced to simple parameters which may include arbitrarily complex (external) constraints
between objects. Parametric geometry can be defined using either implicit or explicit geometry methods.
For example, a cube defined using implicit geometry would have constraints applied to the length, width, or
height attributes based upon adjacent objects or design criteria.

• reference geometry and placement entities: Defines the most fundamental elements of the geometry for
an object - which allow coordination of multiple geometry representations (e.g. plan view, section view and
3d shape represenations). An example of a reference geometry is an oriented vertex, which consists of a
3D Cartesian point placement entity and a direction placement entity, which specify a local coordinate
system fixed at a particular location in Cartesian space. Refer to the sections titled Reference Geometry
and the Bounding Box and Geometric Primitives for IFC Geometry for more information on reference
geometry and placement entities.

• bounding box: Defines the extents of the shape geometry for an object. A bounding box is an octahedral
boundary element defined by its length attribute (aligned with the X-Axis of the local coordinate system),
width attribute (aligned with the Y-Axis of the local coordinate system) and a height attribute (aligned with
the Z-Axis of the local coordinate system).

The following abbreviations may be used in this section:

• B-rep Boundary representation
• CSG Constructive Solid Geometry
• LCS Local Coordinate System

5.3.1.4 Reference Geometry and the Bounding Box
Reference geometry is the mechanism used to coordinate multiple
geometric representations. For this release of IFC, reference
geometry is limited to placement of an element. This placement is
always relative to a reference element, which enables relative
placement.

Over time, IFC objects that have geometry must be able to
accommodate multiple geometric representations or views. For
example, an object may have a different representation depending
upon the phase of the project. Similarly, the architect may choose to
view an object differently from an HVAC engineer. These multiple
representations of objects will all utilize the same reference
geometry. If an application changes the reference geometry, then
other applications are responsible for updating their views to reflect
these changes.

One of the consequences of a single reference geometry with multiple shape representations that reference it
is that the local coordinate systems of the different shape representations are consistent. Each physical IFC
object with different shape representations has one positioning entity which is valid for all views of this IFC

Figure 5-1: IfcSite object

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 38 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

object. From an implementers point of view, this means that the same transformation matrix is applied to all
shape representations related to a given object. This mechanism is applied whether a shape representation is
defined implicitly, explicitly or parametrically.

Each object that has a geometric representation will carry both a reference
geometry (in this Release - limited to placement) and a bounding box.

There are three general types of reference geometry: placement, open path,
and face. In IFC release 1, we have only used placement. Future releases
of IFC will make use of other forms of reference geometry.

The IfcPlacement entity is defined by a 3D cartesian_point entity which fixes
the location of the object’s geometry representation in 3D space. This point
is defined relative to the placement of a reference entity in all cases except
IfcSite, which is defined relative to a reference global position defined by
longitude, latitude and elevation. The reference entity can be any other
project object. This allows users and applications to arrange relative
placements that will simply an modifications to a related group. For
example, if the contents of a Space are placed relative to that Space, moving the Space will automatically
result in a like movement of the contents.

IfcPlacement also includes one or more direction entities which define an orientation about it’s location. The
combination of this location and orientation defines a local coordinate system for the object. This local
coordinate system is used to define the shape representations of the object, and all geometric primitive
references will be relative to this local coordinate system.

Every object with geometry are required to have a minimum
default representation of a bounding box. The bounding box
is the one representation that will always exist and be
available. Even if more specific representations are
associated with an object, the BoundingBox should be
updated and made consistent so that applications which
may only want this minimal representation will have a valid
view of the object geometry.

The bounding box describes the object’s extents with a
length attribute (associated with the X-Axis of the reference
geometry’s LCS), width attribute (associated with the Y-Axis
of the reference geometry’s LCS) and a height attribute
(associated with the Z-Axis of the reference geometry’s
LCS).

Please see the Implicit geometry example for the Light Post below for an example definition of a bounding
box.

5.3.1.5 Implicit Geometry Representation

Introduction

As described in the introduction to this section, the preferred definition of geometry used to represent the
shape of IFC objects will use implicit (or Attribute Driven) geometry. This can be thought of a "simple
parametric" geometry.

Few projects to date have attempted to exchange geometry information using this approach. A notable
exception was the NICC project in Sweden. In studying the projects which have attempted to use implicit
geometry and in analyzing the way geometry can be created by most CAD systems, we have observed two
consistent themes:

1. Use of a set of predefined geometry primitives

2. Use of three geometry creation methods for defining geometry implicitly:

• extrusion: surfaces created through extrusion of a profile along a path

Figure 5-2: Reference
Geometry entity

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 39

Copyright International Alliance for Interoperability - 1996-1999

• revolution: surfaces created through rotating a profile about an axis
• composition: solids or surfaces created through the composition of multiple sub-parts

Each of these is an optimal approach for describing (and creating) certain types of geometry representations.
Together, these primitives and methods for generating more complex geometry provide an adequate toolset
for describing the geometry of any IFC object type in AEC.

In order to define the geometry of IFC objects parametrically, we will:

1. parameterize a set of geometry primitives widely supported in the industry

2. propose a notation system which supports use of these primitives in extrusion, revolution, and
composition.

In the next section we will introduce use of this notation system. The sample definition includes three parts:

1. Implicit Geometry placement - as described in the section above

2. BoundingBox geometry - as described in the section above

3. Implicit geometry definition - using primitives, extrusion, revolution and composition

It is very important to note that the “simple parametric” approach that we are using to define implicit geometry
means that the information to be stored in the IFC Project Model is the parameters for the construction of the
geometry, NOT THE RESULTING GEOMETRY ITSELF. This means that an application which supports IFC
must construct the geometry representation that is appropriate (for that application) using these parameters
and the definitions in the IFC Object Model specification.

The approach used here makes use of concepts first introduced in the NICC project in Sweden and the High
Level Interface (HLI) defined by IEZ.

Implicit geometry representation classes

We have included 3 general groups of explicit geometry representation classes. These are used in the
definition of a product shape using implicit geometry.

• Attribute driven profiles
• Attribute driven extruded solids
• Attribute driven revolved solids

Sample implicit geometry representation

((** this section will be completed for the R2.0 final specifications **))

5.3.1.6 Explicit Geometry Representation

Introduction

In the event that the Implicit geometry shape, as defined in the previous section, is not adequate for some
applications' needs, an optional explicit shape definition may also be attached to an IFC object.

We have adapted parts of STEP part 42 to define the Explicit Geometry sections of the geometry resource.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 40 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

Explicit geometry representation classes

We have included 4 general groups of explicit geometry representation classes. These are used in the
definition of a product shape using explicit geometry

• Component Shape Representation
• Site Shape Representation
• Space Shape Representation
• Bounding Box

Sample explicit geometry representation

((** this section will be completed for the R2.0 final specifications **))

5.3.1.7 References
ISO 10303-42:1995, Industrial automation systems and integration - Product data representation and
exchange - Part 42: Integrated Generic Resources: Geometric and Topological Representation.

Speedikon High Level Interface Version 3.0: The Interface of IEZ AG Bensheim (1995), IEZ Bensheim.

Tarandi, V (1993), Object oriented communication with NICC (Neutral Intelligent CAD Communication), in
Management of Information Technology for Construction, World Scientific & Global Publication Services,
1993, Singapore, pp. 517-527.

5.4 IfcPropertyResource

5.4.1 Classification

5.4.1.1 Introduction
The IfcClassificationFunction model has been developed from that contained within the proposed ISO 10303
part 106 (Building Construction Core Model) which was built in conjunction with ISO Technical Committee 59.
It represents an agreed data model for the classification of objects. In developing the model, it was
recognized that there are many different classification systems in use throughout the industry and that their
use differs according to geographical location, industry discipline and other factors. For a generic model such
as the IFC Integrated Model, it is necessary to allow for the adoption of any rational classification system
whether it be based on elements, work sections or any other classifiable division.

5.4.1.2 Scope
This part of the Industry Foundation Class Specifications specifies the use of the independent resources
necessary for the scope and information requirements for the exchange and sharing of classification
information between application systems. Such information may be used at all stages of the life-cycle of a
building

The following are within the scope of this part of the specifications:

• The provision of one or more classifications to an object.
• The designation of a classification in terms of its author, table and notation.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 41

Copyright International Alliance for Interoperability - 1996-1999

• The provision of a means of semantically identifying the meaning of a classification notation.
• The identification of the classification which is the most relevant at a particular time.

The following are outside of the scope of this part of the specifications:

• The ability to translate from one classification notation to another.

5.4.1.3 Background
The principal applied is that any type of object can be classified. For the purposes of classification, no
distinction is made between a product, a process, a control or a resource. Any of these types may be dealt
with via classification tables. To satisfy the classification requirements, one or more IfcClassificationFunctions
are used. It should be noted that the IFC Integrated Model specifically allows for more than one classification
function to be applied to an object. The model also allows for the classification requirement to be satisfied by
zero classification functions and this allows for situations where classification is not required.

Equally, and as would be expected, a classification function can be used to satisfy the classification
requirements of many objects since there are likely to be multiple instances of the same class of object.

An IfcClassificationFunction is derived from a table of CharacteristicFunctions. This is the classic table to be
found in all classification systems. The model allows for the IfcClassificationFunction to comprise a list of
CharacteristicFunctions. The use of the ‘list’ aggregation in the relationship rather than ‘set’ implies that there
is order in the CharacteristicFunctions. This order is used by allowing the IfcClassificationFunction to have a
priority value. This is an integer which points to the index of the CharacteristicFunction in the list which has
the highest priority. The term 'priority' is used rather than any other, such as index, to capture the idea that at
any one time a particular characteristic function has more importance than other characteristic functions
which may be available. Index as a term would not capture this concept of importance. By changing the
priority value within an application, the classified view of an object is allowed to change to suit prevailing
circumstances.

To allow the classification system used to be recognized, each CharacteristicFunction has attributes which
define the publisher, the element table and the notation. The publisher identifies what would usually be
considered to be the name of the classification system such as CI/SfB, BSAB, CAWS, Masterformat,
Uniformat etc. whilst the element table determines which of the various forms or tables within the system is
used. Notation identifies the classification reference normally used. For instance, within the CI/SfB system
piped engineering services are contained under the 500 notation whilst in the CAWS system they are within
the S-- notation. A further attribute available is a textual description of the classification notation so that, as
well as the actual notation, a semantic idea of the notation meaning can be shared.

These attributes of the CharacteristicFunction can be
visualized from the card index box shown here. The
publisher is the box, which contains various cards
which are the tables, each table having a set of rows
with each row being a notation.

It is important to note that, whilst several different
classifications may be applied to an object via the
classification function, the model does not imply that
there is any equivalence between such classification
notations. This precludes the use of the model as a
means for the translation of one classification notation
to another. The reason for this is that, generally, it is
possible to select from any of several different
notations within a classification system for an object.
The actual selection is the responsibility of the user
according to circumstances. Therefore, there is a many to many relationship between classification systems
for which there is no resolution at this stage of development.

5.4.1.4 References
ISO 10303-WD106 (version S511);, Industrial automation systems and integration - Product data
representation and exchange - Part 106: Building Construction Core Model

Publisher

Table

Notation

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 42 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

5.4.2 Cost

5.4.2.1 Introduction
The IfcCost model provides a facility which enables the exchange or sharing of basic information about the
cost of objects. It does not attempt to develop ideas of cost beyond those of simple description, quantity and
monetary amount, leaving these to be developed in more detail elsewhere.

5.4.2.2 Scope
This part of the Industry Foundation Class Specifications specifies the use of the independent resources
necessary for the scope and information requirements for the exchange of building cost information between
application systems. Such information may be used at all stages of the life-cycle of a building, but is intended
primarily to support the construction stage and its need to develop costs for budget, tender variation and
interim payment application purposes . The purpose is to enable software applications in all building and
construction industry sectors to exchange building element shape and spatial arrangement information.

The following are within the scope of this part of the specifications:

• The provision of a cost as a monetary amount to an object together with the currency in which that
amount is designated

• The provision of a list of cost factors which may be applied to a cost to vary its amount together with the
purpose of such cost factors.

• The designation of a cost in unitary terms in cases where there may be many objects with the same
cost, or itemized terms in cases where cost is applied to singular objects.

The following are outside of the scope of this part of the specifications:

• The detailed development of cost schedules.
• Assignment of cost to transactions recorded on documents such as interim applications for payment,

variation orders etc.
• Costs recorded in multiple currencies.
• The calculation of cost through the application of cost factors to a cost amount.
• The distinction between cost additions and cost deductions other than through allowing cost factors to

have both positive and negative values.

5.4.2.3 Background
Every cost is considered to be delivered in a monetary amount which is subject to a denomination of currency
applicable to the project. A series of cost factors may be applied to a cost such that, from a base cost (such
as that which may be quoted in a manufacturers or suppliers price list), an actual cost may be calculated Note
that cost factors may be applied either as a positive or negative quantities. Note that the cost factor relation is
a list so that, if more than one cost factor is applied, an order of applying the cost factor is implied. Thus, if the
base price is initially stored as cost from a price list whereas in practice, that price is subject to a 15% uplift for
one price list amendment, a 10% uplift for a subsequent price list amendment, a 25% trade discount to the
user and a 5% rebate on net cost for bulk purchases over a period of time by the user the order of application
would be +15%, +10%, -25%, -5%. Clearly, this order is important in deriving an actual cost from a base cost.
Application of the cost factors in a different order would give a different, and incorrect, figure. In addition to the
cost factor quantity, provision is made for the attachment of a cost factor purpose so that the rationale of each
cost factor is identifiable.

Costs may be identified either as UnitCost or ItemCost or as both (no exclusion constraint is applied to these
subtypes of cost since it may be appropriate to identify costs in both unit and item quantities). These reflect
the way in which they would be applied normally. A UnitCost would be expected to be multiplied by the
quantity of an item to which it is applied whereas an ItemCost would be the cost for a whole item (usually
subject to a quotation).

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 43

Copyright International Alliance for Interoperability - 1996-1999

5.4.2.4 References
ISO 10303-WD106 (version S511);, Industrial automation systems and integration - Product data
representation and exchange - Part 106: Building Construction Core Model

5.4.3 Identification

5.4.3.1 Introduction
The IFC Integrated Model provides a rich range of identification possibilities for varying purposes.
Identification is required to manage the process of what and where an object is and to provide some terminal
information concerning status so that users and software applications know with which object they are
dealing.

5.4.3.2 Scope
This part of the Industry Foundation Class Specifications specifies the use of the independent resources
necessary for the scope and information requirements for the exchange and sharing of object identification
information between application systems. Such information will be used at all stages of the life-cycle of a
building

The following are within the scope of this part of the specifications:

• The provision of an identification to an object which allows it to be consistently understood as the same
object irrespective of the systems which may share in its use.

• The provision of an identification to an object which allows it to be identified in terms of its physical
existence in reality (that is, an identification which remains with the physical object wherever it moves).

• The provision of an identification to an object which allows it to be identified in terms of its logical
existence at a location in space (that is, an identification which remains with the place at which a
physical object is located irrespective of the physical object located at that place).

• The provision of an identification to an object which allows the identification of the software application
which created it.

• The provision of date identification which allows both the creation date and the deletion date of the
object to be identified.

The following are outside of the scope of this part of the specifications:

• The provision of any specific identification which may be applied to many instances of the same type of
object other than as may be provided for by the logical identification facility.

• Status identification other than terminal status designated by creation and deletion.

5.4.3.3 Background
Every object must have an identification. This is an inviolable rule of the IFC Integrated Model. Identification
allows the progress of an object to be traced in various ways. Tracing may be for many purposes. Depending
on the purpose, a particular form of identification may be mandatory or optional.

Each object must have a unique identifier. This remains with it as an invariant property and allows it to be
recognized across different systems which may impose their own internal identifications as well. The unique
identifier is absolutely necessary for shared data use and also for the possible development of incremental
data exchange using exchange files. Without such an identifier, it would not be possible to recognize
individual objects across exchanges.

Each object may potentially have a physical identifier. This is data which is normally associated with a
physical product and which again is expected to remain with that physical item throughout its usage. It is the
equivalent to a serial number on the nameplate of a mechanical or electrical device.

Note that the physical identifier is associated with the physical item which is not the same thing as an instance
of an entity. It is possible for a physical item to be replaced by a different physical item but for it to remain the
same instance. The proposed ISO 10303-221 demonstrates this principle in its discussion of pumps.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 44 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

The provision is also made for objects to have logical identifiers, a relationship of zero, one or many being
allowed. A logical identifier is required to have both a logical_id_value and may optionally be given a
logical_id_purpose which determines its purpose.

A logical identifier is not required to be unique whereas both the unique identifier and the physical identifier
are. By not requiring that the logical identifier is uniquely associated with an instance of an object, it is
possible to use it in a flexible way. For instance, it might be used for asset identification where a number of
instances of a physical product form a single asset. At the same time, a different logical identifier might be
used for scheduling purposes, for example, identifying that all light fittings with a given identification are of the
same type.

Each object is required to have an application identifier which specifically identifies the software application
which created it. This is accompanied by an object creation date which indicates the date on which the object
was first instantiated and a deletion date which indicates the time at which that particular instantiation is no
longer required. Note that adding a deletion date does not cause the instantiation to be removed; it marks it
for removal at such time as the database containing it is 'cleaned up'. The provision of deletion date is useful
in the construction phase of a project in providing an audit trail for additions and deletions which can then be
costed in conjunction with the Cost model.

5.4.3.4 References
ISO 10303-WD106 (version S511);, Industrial automation systems and integration - Product data
representation and exchange - Part 106: Building Construction Core Model

5.5 IFCPropertyTypeResource

5.5.1 PropertySets

5.5.1.1 Introduction
One of the primary issues with defining an object model for AEC projects is that there are literally thousands
of building elements and concepts in these projects that are candidates to be represented as different types
of objects. IFC Release 2.0 is focused on establishing a means by which information is shared and
exchanged and does not specify any application behavior. This means that many of the distinctions between
these objects can be defined in terms of ‘type’ and associated properties. Such PropertySets are associated
with an object rather than contained in it.

This approach has two advantages:
• Dramatic reduction in the number of classes in an implementation - differences are captured in terms of

attached PropertySets
• Opportunity to attach and detach such definition extensions at any time - thus an element can

accumulate a richer and richer definition through time, as different application add PropertySets which
define aspects from a particular application or AEC domain 'point of view'.

This will not work in the case where special semantic relationships are required for a particular ‘type’ of
object. In these cases, 'types' must be promoted to object classes so that such special relationships can be
modeled.

PropertySets are included in IFC Release 2.0 can be used in four ways:

1. Definition of Type driven properties to be shared by all occurrences of a given object type

2. Definition of Type driven properties that differ for each occurrence of a given object type.

3. 'Domain view' extensions to defined by classes in the IFC Core and Interoperability layers

4. Application and end-user defined extensions to objects defined by classes in IFC Core,
Interoperability or Domain/Applications layers of the IFC object model.

The first two will be discussed in more detail in the section below on Type Definition. The latter two will be
elaborated here.

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 45

Copyright International Alliance for Interoperability - 1996-1999

5.5.1.2 Domain Extension PropertySets
It is anticipated that the most common use of PropertySets will be the extension of object definitions from the
point of view of an industry domain, or software application. As IFC project models are to be shared between
many disciplines, it is important to insure the availability of information that is commonly useful, without
imposing the overhead that would be incurred by including all information of interest to all disciplines.
Therefore, the IFC project model architecture is segmented. The IFC Core model includes classes that are
needed by multiple disciplines. Their definition in the Core includes the information that is commonly useful.
All other information about these objects is linked via extension PropertySets that are attached at any time in
the project lifecycle, by any application. Further, as a project moves through its lifecycle, these extensions
can be detached and archived when they are no longer needed online. Restoration from an archive and re-
attachment should also be possible. In this way, any IFC compatible application has access to a wide array of
“views” for any object in the project model, but does not have to deal with this extension information when it is
not needed.

A number of Domain extension PropertySets are included in IFC Release 2.0. Applications supporting a
particular domain extension model will be expected to be able to generate and correctly interpret these
PropertySets.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 46 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

EXAMPLE: Att_HVACSpaceElementInformation

((** this section will be completed for the R2.0 final specifications **))

5.5.1.3 Application/End-User Extension PropertySets
Unlike their use in type definition and Domain extensions, which are intended for use by multiple applications
and users, End-User extensions will essentially be private to the application or end-user. Such private
extensions are an important element in the IFC Project Model architecture because they insure the
opportunity for applications and end users to extend and customize project model definitions on a project by
project basis. This is an essential requirement for the AEC industry.

An application or end-user defined PropertySet can be developed at runtime. The IfcPropertySet and
IfcProperty classes include the necessary attributes to create a custom set at any time. The IfcPropertySet
class also includes a general purpose interface for querying the names and types of Properties included in it.
This means that other applications will also have access to this information, though they may not correctly
interpret the intended semanic meaning.

EXAMPLE: Att_MySpaceDefinitionExtension

((** this section will be completed for the R2.0 final specifications **))

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
5 - Guide to the Resources Layer Page 47

Copyright International Alliance for Interoperability - 1996-1999

5.5.2 TypeDefinitions

5.5.2.1 Introduction
This section defines the approach used in the IFC Object Model to defined types of objects that do not require
separate object classes. This topic is closely related to the type driven PropertySets described in sections
5.5.2.3 and 5.5.2.4.

5.5.2.2 Runtime defined type definition
As IFC object 'Types' do not require separate classes for each type, they can be defined at runtime. This
yields a significant advantage for software developers and end users of applications supporting IFC by
providing flexibility and extensibility to the objects in IFC models.

5.5.2.3 Type Driven Attributes that are Shared
One motivation for defining a
“Type” of building element is to
establish a standard that will be
used many times in a project. In
these cases, a standard type is
established through the
definition of a set of attributes or
characteristics that will be held
constant for all occurrences in
the Project model. Therefore,
there should be a single record
of these attributes that is
associated with the
TypeDefinition object rather than
with each occurrence of the
element.

Note that the TypeDefinition
Class includes a relationship to
an PropertySet for just this
purpose.

EXAMPLE: Att_DoorType

((** this section will be completed for the R2.0 final specifications **))

Typed Object
(IfcObject)

Attribute/Relationship-A
Attribute/Relationship-B
Attribute/Relationship-C

...
TypeDefinitions

OccuranceProperties

ExtendedProperties

Attribute/Relationship-D
Attribute/Relationship-E
Attribute/Relationship-F

...

Type Definition Object
(IfcPropertyTypeDef)

TypedClass (STRING)
DomainViewType (ENUM)
GenericType (STRING)
GenericTypeReference (Ref)
SharedProperties (Ref)

Shared Properties Object
(IfcSharedPropertySet)

Parent Property Set Definition (Ref)
Property Definition -1 (Ref)
Property Definition -2 (Ref)

.

Occurrence Properties
Object (IfcOccurrencePropertySet)

TypeReference (Ref)

Parent Property Set Definition (Ref)
Property Definition -1 (Ref)
Property Definition -2 (Ref)

.

Extended Properties Object
(IfcPropertySet)

Property Definition -1 (Ref)
Property Definition -2 (Ref)

.

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 48 5 - Guide to the Resources Layer

Copyright International Alliance for Interoperability - 1996-1999

5.5.2.4 Type Driven Attributes that vary with Occurrence
Another motivation for defining a “Type” of building Element is to establish a use or purpose for the element
that requires a that a standard set of attributes be defined for each occurrence. In these cases, this standard
set of attributes will be determined by the type, but values for these attributes will vary for each occurrence of
the element type. Therefore, the must be a link from each occurrence of the element type to an “owned”
occurrence of the PropertySet. Please see the diagram in the section above.

Note that the we have included a set of references to PropertySets in the IfcProductObject (called
ExtensionPropertySets). In the case of a type driven PropertySet which varies for occurrence, the name of
the PropertySet will be defined by the TypeDefinition object. An application must create an instance of this
PropertySet and attach it as an ExtensionPropertySet on the typed object.

EXAMPLE: Att_OccupiedSpace

((** this section will be completed for the R2.0 final specifications **))

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
6 - Guide to the Core Layer Page 49

Copyright International Alliance for Interoperability - 1996-1999

6. Guide to the Core Layer

((** this section will be completed for the R2.0 final specifications **))

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model for AEC Projects
Page 50 6 - Guide to the Core Layer

Copyright International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
7 - Guide to the Interoperability Layer Page 51

Copyright International Alliance for Interoperability - 1996-1999

7. Guide to the Interoperability Layer

((** this section will be completed for the R2.0 final specifications **))

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 52 7 - Guide to the Interoperability Layer

Copyright International Alliance for Interoperability - 1996-1999

Volume 2 - IFC Object Model Guide IFC Release 2.0 - Beta - 10-Jan-99
8 - Guide to the Domain/Application Models Layer Page 53

Copyright International Alliance for Interoperability - 1996-1999

8. Guide to the Domain/Application Models Layer

((** this section will be completed for the R2.0 final specifications **))

IFC Release 2.0 - Beta - 10-Jan-99 Volume 2 - IFC Object Model Guide
Page 54 8 - Guide to the Domain/Application Models Layer

Copyright International Alliance for Interoperability - 1996-1999

